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Abstract—Over-dispersed network data mining has emerged as
a central theme in data science, evident by a sharp increase in
the volume of real-world network data with imbalanced clusters.
While most of existing clustering methods are designed for
discovering the number of clusters and class specific connectivity
patterns, few methods are available to uncover the imbalanced
clusters, commonly existing in network communities and image
segments, from network data with over-dispersed cluster size
distribution. The latter is considered as an intrinsic structural
property of the network data. In this paper, we propose a
generalized probabilistic modeling framework, SizeConnectivity,
to estimate over-dispersed cluster size distribution together with
class specific connectivity patterns from network data. A wide
range of cluster size distributions revealed by real-world network
data can be accurately captured by our method. We performed
extensive synthetic and real-world experiments on clustering
social network data and image data for detecting network
communities and image segments. Our results demonstrate a
superior performance of our SizeConnectivity clustering method
in recovering the hidden structure of network data via modeling
over-dispersion.

Index Terms—Over-dispersion, network data, clustering, clus-
ter size distribution, network communities, image segments.

I. INTRODUCTION

The last few years have witnessed an explosive increase
of network data volume, variety and veracity as it naturally
describes the structured connections among objects. Formally,
objects refer to nodes and connections refer to edges between
nodes. There is a need to uncover the hidden structure of the
network data in a number of data rich domains, such as so-
cial science, image processing, business analysis, information
retrieval and bioinformatics [1], [2], [3], [4]. To deal with
this important and interesting problem, a lot of network data
clustering methods [5], [6], [7] have been designed aiming at
grouping the nodes with a similar connectivity pattern in the
same cluster.

Intuitively, clusters in network data not only differ in
their connectivity patterns, but also can differ dramatically
in their sizes. Unfortunately, the distribution of network
cluster sizes, particularly over-dispersed with high variance,
remains a less attended issue in network data mining. Over-
dispersion arises when the data exhibits larger variance than
the variance permitted by the assumed model, also known as
extra variation. It exists in data from many different research
areas including sociology, economics, ecology and biology
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[8]. Standard network clustering methods, such as spectral
clustering [5] and model-based probabilistic clustering [9],
albeit effective, are not designed to uncover over-dispersed
network clusters. Thus, new modeling framework considering
both over-dispersed cluster size distribution and connectivity
pattern is urgently needed.

To further motivate our work, let us briefly discuss two
exemplar applications in clustering network data: social net-
work community detection and image segmentation. In social
network community detection problem, network is partitioned
into many modules of subnetworks (communities) and the
cluster sizes are commonly over-dispersed. For example, col-
lege football teams in the USA and their games, considered as
network data where nodes represent football teams and edges
exist between pairs of football teams in competition games.
The division sizes of college football teams corresponding to
cluster sizes are often over-dispersed.

Image segmentation aims at finding objects that are com-
monly constructed via adjacent pixels with a similar grey
level. In network based image segmentation methods, pixels
are treated as nodes and edges exist when the dissimilarity
among pixels are less than a specific threshold. As the size
and shape of each object within the image are different from
each other, e.g., a rabbit and a house, the object sizes are
over-dispersed that is very common in the real-world image
data. However, the standard network clustering methods intend
to divide the majority group into several subgroups, e.g.,
hierarchical clustering [10].

Here we propose a novel clustering approach for detecting
imbalanced network clusters by explicitly modeling the over-
dispersion. Our proposed method employs a model-based
probabilistic clustering approach since it naturally captures
geometric property and overall structural information of the
network data. In addition, unlike some commonly used net-
work clustering methods such as spectral clustering [5] and
hierarchical clustering [11], the location and shape of data
and cluster sizes information can be efficiently encoded in the
model-based probabilistic clustering methods [12].

In our model, we use Poisson distribution to accommodate
the imbalanced cluster sizes revealed in real-world network
data. Compared to other discrete probability distributions,
Poisson distribution is an asymmetric distribution with heavy
right tail; thus, it is more suitable for accommodating over-
dispersed cluster size than others, e.g., Laplace and negative



binomial. Laplace distribution shares the similar core function
with normal distribution in their probability density function
[13], which limits its capability of accommodating over-
dispersion. Negative binomial distribution works well for the
data with excessive zero counts (zero-inflated property) [14]
but it is not the case for many network data sets.

Our contribution is to model over-dispersed cluster size
distribution as an independent component from the class spe-
cific connectivity for network data clustering. Using the class
indicator as a latent variable, we derive and maximize a new
likelihood function of our model-based probabilistic clustering
model, denoted as SizeConnectivity Generalized (SCG) model,
to simultaneously estimate imbalanced cluster sizes and class
specific connectivity pattern. We present extensive synthetic
and real-world examples from social communities and image
segmentation to show the ubiquity of over-dispersion as well
as the versatility of the method we proposed. The advantages
of SizeConnectivity framework over the conventional Con-
nectivityOnly framework, which only considers class specific
connectivity pattern, are demonstrated in Figure 1. It clearly
shows that the conventional ConnectivityOnly framework does
not segment the image correctly in the over-dispersed scenario
shown as the first two rows of the 3rd column in Figure 1.

Fig. 1: The conventional ConnectivityOnly approach (3rd col-
umn) does not accurately detect clusters with over-dispersed
(high variance) cluster size distribution whereas the proposed
SizeConnectivity approach (2nd column) does. 1st column
represents the original input images (ground truth). The four
true circles are shown in different colors and the corresponding
segments are calculated from the input images using Size-
Connectivity and ConnectivityOnly approaches, respectively.
The conventional ConnectivityOnly approach, i.e., spectral
clustering with normalized cuts, was implemented in the
sklearn module of Python package Scikit-learn [15].

The rest of the paper is organized as follows. In Section
II, we review the related works in network data clustering. In
Section III, we propose our new SizeConnectivity clustering
framework with technique details. In Section IV, we present

experimental results using both synthetic and real-world net-
work data and compare with the selected clustering methods
for network data. Finally, we conclude with discussion in
Section V.

II. RELATED WORK

Clustering approaches have been extensively used in ana-
lyzing network data for discovering the nodes and connec-
tivity patterns among the nodes within a cluster or across
different clusters [7]. Specifically, many clustering methods
use pairwise dissimilarities, e.g., Euclidean distance, between
the nodes, which are broadly divided into partitional clustering
and hierarchical clustering [7].

A fundamental partitional clustering algorithm is K-means
[7]. It is efficient and effective but its performance heavily
depends on the initialization and is sensitive to the outlier
nodes as well. To overcome these limitations, another type of
partitional clustering algorithms, known as connectivity-based
spectral clustering, has been proposed, e.g., in [5].

Normalized cuts [5], a well-known spectral clustering
method, attempts to optimize the cost functions with partition-
ing all the nodes connected by weighted pair-wise similarity
edges to find more clusters. In this method, a metric was
proposed to avoid clustering a single outlier into one cluster
that is highly effective for image segmentation [5]. In recent
years, spectral methods for community detection and graph
partitioning via maximizing modularity and likelihood have
been developed based on the eigenvectors of the so-called
normalized Laplacian matrix [16].

Single-link and complete-link are among the well-known
hierarchical clustering algorithms, which recursively search
nested clusters either in agglomerative or divisive mode [6].
They are useful to represent positions in network data while
their criteria of deciding how many clusters are often arbitrary
without providing an unique solution [17]. Moreover, they do
not work well when there is no valid distance measure can be
used especially in the network data with unweighted edges.
These algorithms are based on a greedy procedure which only
consider the local neighbors at each step; thus, they ignore the
global shape and size of clusters [6] in the network data.

Different from the partitional and hierarchical clustering
approaches, the model-based probabilistic clustering methods
are capable of drawing a global picture of the network struc-
ture with capturing its geometric property [18]. The classical
model-based probabilistic clustering method is built based
on finite mixture model [19], denoted as ConnectivityOnly
method in Appendix, which models different connectivity pat-
terns in network data. However, using classical finite mixture
models for capturing over-dispersed cluster size distribution
may represent a significant misrepresentation of the intrinsic
structure of the network data since cluster size distribution in
real-world data is frequently imbalanced and heavily deviated
from a normal distribution.

Besides connectivity patterns, extended finite mixture mod-
els may implicitly capture normally distributed cluster sizes



by using multinomial distribution as we described it in Sup-
plementary file. The latter asymptotically converges to normal
distribution [20]. More recent model-based clustering methods
[12] for network data to detect overlapping communities have
been proposed as extensions to the classical finite mixture
model. Nevertheless, these methods implicitly use multinomial
distribution for cluster sizes hence are incapable of accommo-
dating over-dispersed cluster size distribution.

Therefore, the extended finite mixture models are not specif-
ically designed for modeling over-dispersion that widely exists
in network clusters. In other words, these approaches may
work well for detecting the symmetric normally distributed
network clusters but not the asymmetric over-dispersed ones.
Due to the lack of clustering methods for detecting imbalanced
clusters from network data, new methods for uncovering the
intrinsic structure of network data accommodating features
inherent in over-dispersed cluster size distribution are desirable
and urgently needed.

III. METHODOLOGY

In this section, we describe the proposed SizeConnectivity
Generalized (SCG) model in detail. In the Appendix, we
will also present a most commonly used connectivity-based
network data clustering method that is denoted as Connec-
tivityOnly model (COM), a multinomial connectivity-based
mixture model (MCM) and two SizeOnly models, which
use Poisson mixture model (PMM) and multinomial mixture
model (MMM) to model cluster size distribution without
capturing connectivity patterns.

As stated in Section I, besides the connectivity information,
the over-dispersed cluster size distribution can also contain
valuable information for improving clustering performance.
Over-dispersed cluster size distribution, representing an in-
trinsic structure of network data, is often of practical interest
together with cluster connectivity. Hence, we develop a novel
SizeConnectivity Generalized (SCG) model for clustering net-
work data considering both class specific connectivity and
over-dispersion in cluster size distribution. We note that SCG
is one-of-a-kind probabilistic modeling approach to integrate
both cluster connectivity and over-dispersion for clustering the
network data. Here we choose Poisson distribution to model
over-dispersion in cluster sizes since it is a non-symmetric
discrete distribution. Assuming there are K clusters and the
kth cluster has nk nodes, then its corresponding probability
has the form:

p(nk|λk) =
λnk

k e−λk

nk!
, (1)

where λk is a parameter representing the size of the kth cluster.
The probability of a link, denoted as θkj , indicates there is

an edge from a particular node in a certain kth cluster to a
node j. Therefore, the probability that a node i belongs to the
kth cluster can be calculated as:

p(X(i,:), Zik = 1|θ) =
n∏

i,j=1

θ
Xij

kj , (2)

where X(i,:) is the ith row of adjacency matrix, Xij = 1 when
there is an edge from node i to node j, otherwise Xij = 0.
And the latent variable Zik is used as an indicator to represent
whether the node i belongs to the kth cluster (Zik = 1) or not
(Zik = 0). Therefore, the likelihood function of SCG model
can be written as:

LSCG(X, |ϕk, θ, λk) =

n∏
i=1

K∏
k=1

⎛⎝λnk

k e−λk

nk!
ϕk

n∏
j=1

θ
Xij

kj

⎞⎠Zik

,

(3)
where ϕk = nk

n denotes the probability of a random node
belongs to the kth cluster.

We employ EM algorithm to estimate the parameters of
SCG model. At the lth iteration, the E-step has the form as:

τ
(l−1)
ik =

p(n
(l−1)
k |λ(l−1)

k )ϕ
(l−1)
k p(X(i,:), Zik = 1|θ(l−1))∑K

k
′
=1

p(n
(l−1)

k
′ |λ(l−1)

k
′ )ϕ

(l−1)

k
′ p(X(i,:), Zik

′ = 1|θ(l−1))
,

(4)

where p(n
(l−1)
k |λ(l−1)

k ) and p(X(i,:), Zik = 1|θ(l−1)) are the
estimation of probability of the kth cluster with nk nodes and
the probability of node i belongs to the kth cluster at the
(l − 1)th iteration, calculated based on Eq. (1) and Eq. (2),
respectively.

In the M-step, we find the parameter values that maximize
the Q(Φ,Φ(l−1))

Q(Φ,Φ(l−1)) =

n∑
i=1

K∑
k=1

τ
(l−1)
ik

(
log

(λ
(l−1)
k )n

(l−1)
k e−λ

(l−1)
k

n
(l−1)
k !

+ log ϕ
(l−1)
k +

n∑
j=1

Xij log θ
(l−1)
kj

⎞⎠ , (5)

where Φ denotes a complete set of SCG related parameters.
λk is estimated by setting the partial derivative of

Q(Φ,Φ(l−1)) to 0, which is mathematically represented as:

∂Q(Φ,Φ(l−1))

∂λk
= 0. (6)

So that we have:

λ
(l)
k = n

(l)
k =

n∑
i=1

Z
(l)
ik , (7)

where Z
(l)
ik = I

(
τ
(l)
ik = max

k′={1,...,K}
τ
(l)

ik′

)
and I(·) is the

indicator function.
ϕk is the cluster weight parameter of the kth cluster, which

is updated by summarizing the expected counts of nodes as:

ϕ
(l)
k =

n∑
i=1

τ
(l−1)
ik

n
. (8)

θkj is the probability that there is an edge between node j and
a particular node in the kth cluster initialized with random
number between [0, 1] and updated as follows:

θ
(l)
kj =

∑n
i=1 Xijτ

(l−1)
ik∑n

i=1 Xi·τ
(l−1)
ik

, (9)



Algorithm 1: The SizeConnectivity Generalized (SCG)
algorithm

Input: The adjacency matrix of network data X ,
Number of clusters K, l=1

1 for k = 1 to K do
2 Initialize: ϕ(0)

k = 1
K , λ(0)

k = n
(0)
k = n

K , and randomly
assign θ

(0)
kj in [0, 1] ;

3 end
4 repeat
5 E-step: Compute the responsibilities τ

(l−1)
ik =

p(n
(l−1)
k |λ(l−1)

k )ϕ
(l−1)
k p(X(i,:),Zik=1|θ(l−1))∑K

k
′
=1

p(n
(l−1)

k
′ |λ(l−1)

k
′ )ϕ

(l−1)

k
′ p(X(i,:),Zik

′=1|θ(l−1))
at the

lth iteration;
6 M-step: Update the corresponding parameters

ϕ
(l)
k =

∑n
i=1

τ
(l−1)
ik

n by Eq. (8),
λ
(l)
k = n

(l)
k =

∑n
i=1 Z

(l)
ik by Eq. (7),

θ
(l)
kj =

∑n
i=1 Xijτ

(l−1)
ik∑n

i=1 Xi·τ
(l−1)
ik

by Eq. (9);

7 l = l + 1;
8 until |τ (l+1) − τ (l)| < ϵ;

where Xi· =
∑n

j=1 Xij is the degree of node i.
The complete algorithm for solving SizeConnectivity Gen-

eralized (SCG) model is given in Algorithm 1. At the begin-
ning of the algorithm, each cluster of network data is given
with equal size, and each cluster is given with equal weight.
That is, λ(0)

k = n
(0)
k = n

K for cluster size and ϕ
(0)
k = 1

K for
the cluster weight parameter. We also randomly assign a value
between 0 and 1 to θ

(0)
kj .

The E and M steps alternates until convergence. Then we
assign each node to a cluster with the highest probability
among all clusters according to the indicator Zik, calculated
as follows:

p(Zik = 1|X, Φ̂) =
p(n̂k|λ̂k)ϕ̂kp(X(i,:), Zik = 1|θ̂)∑K

k
′
=1

p(n̂k
′ |λ̂k

′ )ϕ̂k
′ p(X(i,:), Zik

′ = 1|θ̂)
,

where Φ̂ = {n̂k, λ̂k, ϕ̂k, θ̂}, is a set of estimation of parame-
ters for SCG model after convergence of learning process.

IV. EXPERIMENTS AND RESULTS

In this section, we validate and evaluate our proposed
clustering method by comparing with several other methods
using a total of nine data sets, including four synthetic network
data sets, three synthetic images and two real-world social
network data sets.

A. Experimental Setup

We compared the clustering performance of our proposed
SizeConnectivity Generalized (SCG) model to Connectivity-
Only model (COM), multinomial connectivity-based mixture
model (MCM), Poisson mixture model (PMM), multinomial
mixture model (MMM), and an ensemble of other seven
selected clustering methods, i.e., K-means, MiniBatch K-
means, Spectral Clustering with K-means approach (SC-K),

Spectral Clustering with discretization approach (SC-D)1, Hi-
erarchical Clustering with Ward linkage (HC-W), Hierarchical
Clustering with average linkage (HC-A), and Hierarchical
Clustering with complete linkage (HC-C). We implemented
SCG, COM, MCM, PMM and MMM methods by using
Python language based on the following open-source packages
such as NumPy [21], SciPy [22] and matplotlib [23]. The
other seven clustering methods were implemented in Python
machine learning package Scikit-learn [15].

Since each clustering algorithm has its own heuristic nature
and final clustering results may be different due to different
initialization of related parameters, we ran each algorithm
multiple times using different initial parameter values attempt-
ing to report their best performances. We ran the algorithms
implemented in Python machine learning package Scikit-learn
and our algorithms ten times on four synthetic network data
sets, three synthetic images and two real-world social network
data sets due to the parameter adjustments. Specifically, we
used a different centroid seed each time when we ran the
K-means type of algorithms.We tried different numbers of
connected components in connectivity matrix when running
Hierarchical Clustering type of algorithms. We also used
different degrees of polynomial kernels for running Spectral
Clustering type of algorithms. We tried different batch sizes
for MiniBatch K-means as well.

B. Experiments on Synthetic Network Data

We designed a set of experiments using synthetic network
data to evaluate the performance of our SizeConnectivity
Generalized (SCG) algorithm in uncovering various cluster
size distributions.

We generated four synthetic network data sets, named Syn1,
Syn2, Syn3 and Syn4, with different cluster size distributions
using R package statnet [24]. In each synthetic data set,
the number of nodes and the number of clusters are set to
be 105 and 5, respectively. The cluster size distribution in
Syn1 and Syn2 are more uniform (low variance) while that in
Syn3 and Syn4 are over-dispersed (high variance). We used
a popular open-source visualization and exploration software
Gephi to visualize the network data in Graph Modeling
Language (GML) format [25]. Figure 2 shows the cluster
size distributions of four synthetic network data sets with two
panels, which upper one is the histogram of the true size for
each cluster and the lower one is the actual network plot to
show the distribution of cluster sizes.

We used Adjusted Rand Index (ARI) as the evaluation
metric, when the ground truth of the data is available [26].
Let s and d denote as the number of pairs of nodes that are
in the same cluster in both ground truth and clustering result
and the number of pairs of nodes that are in the different
clusters in both ground truth and clustering result, respectively.
Thus, we have the Rand Index (RI)= s+d

t , where t is the total

1Both spectral clustering methods have employed normalized Laplacian to
find normalized cuts. K-means and discretization are two ways of assigning
labels after the Laplacian embedding [15].



Fig. 2: Cluster size distributions of four synthetic social network data sets. Upper panel is the histogram of the true size for
each cluster; lower panel is the actual network plot to show the distribution of cluster sizes.

number of possible paris in the data set. Then we get the
ARI= RI−E[RI]

max(RI)−E[RI] , where E[RI] is the expected RI.

According to the ARI values in Table I, our proposed SCG
algorithm outperforms other methods in synthetic network data
set Syn3 and Syn4, but not in Syn1 and Syn2. This result
highlights the key advantage of our SCG method in modeling
over-dispersion for improving clustering performance whereas
the conventional methods don’t have.
TABLE I: The Adjusted Rand index (ARI) of the 12
selected clustering methods: SizeConnectivity Generalized
(SCG) model comparing to ConnectivityOnly model (COM),
multinomial connectivity-based mixture model (MCM), Pois-
son mixture model (PMM), multinomial mixture model
(MMM), K-means, MiniBatch K-means (MB-K), Spectral
Clustering with K-means approach (SC-K), Spectral Cluster-
ing with discretization approach (SC-D), Hierarchical Clus-
tering with Ward linkage (HC-W), Hierarchical Clustering
with average linkage (HC-A) and Hierarchical Clustering with
complete linkage (HC-C) using four synthetic social network
data sets and two real-world data sets. The best performance
results are bold faced.

Methods Syn1 Syn2 Syn3 Syn4 Polbooks Football
SCG 0.72 0.74 0.83 0.80 0.87 0.78
COM 0.48 0.56 0.50 0.50 0.56 0.57
MCM 0.48 0.56 0.51 0.53 0.56 0.55
PMM 0.39 0.51 0.51 0.47 0.38 0.46
MMM 0.51 0.50 0.33 0.32 0.38 0.37

K-means 0.67 0.67 0.68 0.69 0.67 0.64
MB-K 0.67 0.68 0.70 0.71 0.66 0.62
SC-K 0.68 0.73 0.77 0.76 0.77 0.74
SC-D 0.75 0.76 0.74 0.71 0.75 0.71
HC-W 0.68 0.67 0.71 0.70 0.76 0.72
HC-A 0.58 0.61 0.70 0.72 0.74 0.69
HC-C 0.62 0.64 0.74 0.73 0.75 0.70

To further demonstrate the key advantage of modeling over-
dispersion in network data, we then generated three synthetic
images with four circles representing four clusters as image
network data, using the module sklearn of Python package
Scikit-learn [15], shown in Figure 1 in Section I. Note that

the over-dispersion of the four circles’ sizes exist in the first
two images but not the third one as comparison.

As mentioned above, in images, pixels are treated as nodes
and edges exist when the grey level dissimilarity among pixels
are less than a specific threshold. In our experiments, we
set the threshold of the three synthetic images as 10%, i.e.,
assuming pi and pj are the grey values for two pixels i and
j, if |pi−pj |

255 ≤ 10%, we define there is an edge between two
pixels i and j.

We presented the clustering results for this synthetic image
data in Figure 1 to demonstrate our motivation for modeling
over-dispersion in network data. To support the key advantage
of modeling over-dispersion by visualizing the image segmen-
tation results, we computed ARI values for our SCG clustering
algorithm and the conventional spectral clustering algorithm
SC-K in Table II.

Our SCG algorithm implementing the SizeConnectivity
approach outperforms the SC-K approach among all three
synthetic images, especially for the first two images with over-
dispersion. Note ARI values of the SCG and SC-K algorithms
are very close in the third image due to its four circles’ sizes
are more uniform. In conclusion, the experimental results from
both synthetic social and image network data sets demonstrate
that our SCG algorithm perform better via modeling over-
dispersion in image segmentation.

TABLE II: ARI values of image segmentation using SCG
algorithm (SizeConnectivity) and SC-K algorithm (Connec-
tivityOnly). The best performance results are bold faced.

Image No. SCG Clustering SC-K Clustering
1 0.81 0.51
2 0.85 0.43
3 0.89 0.85

C. Experiments on Real-world Network Data

The two real-world network data sets Polbooks and Foot-
ball, categorized as social network data, were downloaded



Polbooks Football

Fig. 3: Community size distributions of two real-world social
network data sets: Polbooks and Football.

from University of Michigan network data webpage2. Please
refer to Figure 3 to see the true community size distribution
for Polbooks and Football. The data set Polbooks contains
the network of books about US politics with 105 nodes
representing books about US politics sold by the online book-
seller Amazon.com. Given values as “l", “n", or “c", they are
labeled as “liberal", “neutral", or “conservative" respectively.
And edges represent frequent co-purchasing of books by the
same buyers, as indicated by the “customers who bought this
book also bought these other books" feature on Amazon [27].
Football contains the network of American football games
between Division IA colleges during regular fall season. There
are 115 nodes representing 115 football teams and 12 clusters
which are the 12 conferences, and edges connect any pair of
football teams with any competition [16].

The ARI results of these two real-world network data sets
are shown as last two rows of Table I. Specifically, SCG out-
performs in the network data Polbooks due to SCG performs
better within dispersed community size distribution comparing
with ConnectivityOnly and SizeOnly approaches. In this data
set, the majority communities are “liberal" and “conservative"
represented by red and green dots, while “neutral" represented
by blue dots is much less than the other two communities
shown in Figure 4. As a result, all the three approaches can
detect most of the major two communities via community
connectivity or size. However, we can see that the “neutral"
community can not be detected correctly due to its community
size is much more unlike the other two communities, only our
proposed SizeConnectivity approach can detect the most of
books in “neutral" community comparing with the Connec-
tivityOnly and SizeOnly approaches. To further indicate the
difference of three methods’ performance, Table III shows the
accuracy of clustering result for each cluster.

V. CONCLUSION

In this paper, a novel SizeConnectivity Generalized (SCG)
model is presented to solve clustering problems for network
data. Our proposed SCG algorithm integrates cluster (com-
munity or segment) connectivity with over-dispersed cluster

2http://www-personal.umich.edu/~mejn/netdata/

TABLE III: Accuracy of clustering result of Polbooks network
data set for each cluster using SCG algorithm (SizeConnec-
tivity), ConnectivityOnly model (COM) and SizeOnly model.
The best performance results are bold faced.

Color/Community SCG COM SizeOnly
Liberal 0.98 0.91 0.84

Conservative 0.98 0.85 0.77
Neutral 0.73 0.25 0.14

size distribution in one generalized model. We compared our
proposed SCG model with ConnectivityOnly model using pure
probabilistic counting mixture model (COM), SizeOnly model
using cluster size information with mixing proportion mixture
model (PMM and MMM) along with other partitional and
hierarchical clustering approaches. From clustering results of
real-world and synthetic network data, it is obvious that the
proposed SCG outperforms other connectivity-based clustering
approaches.

Albeit the joint probability model was presented in the
context of unsupervised network data clustering, it is suffi-
ciently flexible to be extended to solving supervised network
classification problems. Moreover, we can extend our SizeCon-
nectivity approach to SizeDensity approach, which employs
appropriate density distributions to detect imbalanced clusters
in alphabet, continuous and categorical data.
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APPENDIX

A. Conventional ConnectivityOnly Model (COM)

We start by introducing the conventional ConnectivityOnly
approach for network data clustering. The probabilistic mix-
ture model is a powerful technique for detecting structural
features and connectivity patterns in network data [9]. In this
paper, we name this kind of method as ConnectivityOnly
model (COM) because it does not model over-dispersion in

network clusters. This type of probabilistic mixture method
aims at capturing the connectivity information by modeling
the probability of a link from a particular node in a certain
kth cluster to a node j, which is denoted as θkj . The likelihood
of COM can be written as:

LCOM(X,Zik|ϕk, θ)=

n∏
i=1

K∏
k=1

(ϕkp(X(i,:), Zik = 1|θ))Zik

=

n∏
i=1

K∏
k=1

⎛⎝ϕk

n∏
j=1

θ
Xij

kj

⎞⎠Zik

. (10)

As probabilities, both ϕk and θkj have been normalized, i.e.,∑K
k=1 ϕk = 1 and

∑n
j=1 θkj = 1. However, the parameters in

Eq. (10) cannot be estimated via maximum likelihood directly,
due to Zik is a latent variable. Expectation-Maximization (EM)
algorithm is a viable technique to overcome this limitation.

In the E-step, we calculate the expected values of Zik by
the following form:

τ
(l−1)
ik =

ϕ
(l−1)
k p(X(i,:), Zik = 1|θ(l−1))∑K

k′=1 ϕ
(l−1)

k′ p(X(i,:), Zik′ = 1|θ(l−1))
, (11)

where l is the current iteration number.
In the M-step, we estimate the parameter values by maxi-

mizing the expected complete data log likelihood:

Q(Θ,Θ(l−1)) =

n∑
i=1

K∑
k=1

τ
(l−1)
ik (log ϕ

(l−1)
k +

n∑
j=1

Xij log θ
(l−1)
kj ),

(12)
which is also known as auxiliary function, where the notation
Θ represents the complete set of related parameters in COM.
Through simple calculation we can get that ϕk is updated by
summarizing the expected counts of nodes as:

ϕ
(l)
k =

n∑
i=1

τ
(l−1)
ik

n
, (13)

and θkj can be updated as following:

θ
(l)
kj =

∑n
i=1 Xijτ

(l−1)
ik∑n

i=1 Xi·τ
(l−1)
ik

, (14)

where Xi· =
∑n

j=1 Xij is the degree of node i.

http://statnetproject.org
http://statnetproject.org
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154


B. Multinomial Connectivity-based Mixture Model (MCM)

Besides Poisson distribution, multinomial distribution can
be also used to model the cluster size. However, asymptotically
converges to normal distribution [20] that is not qualified to
capture the over-dispersed cluster size distribution. To prove
this, we name this approach as multinomial connectivity-
based mixture model (MCM) using multinomial distribution
to model the cluster size by modeling the latent variable Zik

instead of Poisson distribution:

p(Zik = 1) = n!

K∏
k=1

ϕnk

k

nk!
. (15)

The likelihood function of MCM can be shown as:

LMCM(X|ϕk, θ, λk) =

n∏
i=1

K∏
k=1

⎛⎝ϕkn!

K∏
k=1

ϕnk

k

nk!

n∏
j=1

θ
Xij

kj

⎞⎠Zik

.

(16)
In the E-step τik is updated at the lth iteration as:

τ
(l−1)
ik =

p(Zik = 1)ϕ
(l−1)
k p(X(i,:), Zik = 1|θ(l−1))∑K

k′=1 p(Zik′ = 1)ϕ
(l−1)

k′ p(X(i,:), Zik′ = 1|θ(l−1))
,

(17)

In the M-step, we maximize the Q(Ψ,Ψ(l−1)) by updating
ϕk and Ψkj which are initialized by assigning random number
with normalizing to [0, 1] and estimated by calculating the
value which makes the first derivative of Q(Ψ,Ψ(l−1)) equal
to zero. Let Ψ denote a set of MCM related parameters, and
hence the expected complete data log-likelihood is given as:

Q(Ψ,Ψ(l−1)) =

n∑
i=1

K∑
k=1

τ
(l−1)
ik

(
log ϕ

(l−1)
k + log n!+

K∑
k=1

n
(l−1)
k log ϕ

(l−1)
k −

K∑
k=1

log n
(l−1)
k +

n∑
j=1

Xij log θ
(l−1)
kj

)
.

(18)

Thus, we have:

ϕ
(l)
k =

n∑
i=1

τ
(l−1)
ik

n
=

nk

n
, (19)

θ
(l)
kj =

∑n
i=1 Xijτ

(l−1)
ik∑n

i=1 Xi·τ
(l−1)
ik

. (20)

We can see that the two newly derived parameters ϕ
(l)
k in

Eq. (19) and θ
(l)
kj in Eq. (20) are the same as the ones in Eq.

(13) and in Eq. (14). And both COM and MCM have the only
two parameters. Hence, COM and MCM are equivalent that
our experimental results also indicate this argument. This is
why we choose the Poisson distribution as one of components
in our proposed SCG approach over multinomial distribution.

C. SizeOnly Model
In order to present a more comprehensive analysis of the

effect of cluster size, we use controlling variables method, i.e.,
we analyze two models which only focus on modeling the
cluster size information but omit the connectivity information
of network. Similar as, we choose to use two distributions,
Poisson distribution and Multinomial distribution, to model
the cluster size.

1) Poisson Mixture Model (PMM): By assuming there are
nk nodes in the kth cluster, the size of the kth cluster can
be modeled using a discrete distribution such as Poisson
distribution, so that we can discriminate clusters simply by
their sizes. The likelihood function of the SizeOnly model
which is Poisson Mixture Model (PMM) can be shown as:

LPMM(Zik|λk, ϕk) =

n∏
i=1

K∏
k=1

(
ϕk

λnk

k e−λk

nk!

)Zik

, (21)

The Q function of PMM can be calculated as:

Q(Λ,Λ(l−1)) =

n∑
i=1

K∑
k=1

τ
(l−1)
ik

(
log

(λ
(l−1)
k )n

(l−1)
k e−λ

(l−1)
k

n
(l−1)
k !

+ log ϕ
(l−1)
k

)
. (22)

Then we maximize the Q function value by updating λk,
which is initialized by assuming each cluster size is equal at
first, as follows:

λ
(l)
k = n

(l)
k . (23)

ϕ
(l)
k =

n∑
i=1

τ
(l−1)
ik

n
. (24)

2) Multinomial Mixture Model (MMM): Instead of using
Poisson distribution to model the each cluster size, we can
also use multinomial distribution to model the clusters’ sizes.
Without considering the connectivity patterns, the likelihood
function of the SizeOnly framework using multinomial mix-
ture model (MMM) can be shown as:

LMMM(Zik|ϕk) =

n∏
i=1

K∏
k=1

(
ϕkn!

K∏
k=1

ϕnk

k

nk!

)Zik

. (25)

Auxiliary function:

Q(∆,∆(l−1)) =

n∑
i=1

K∑
k=1

τ
(l−1)
ik

(
log ϕ

(l−1)
k + log n!+

K∑
k=1

n
(l−1)
k log ϕ

(l−1)
k −

K∑
k=1

log n
(l−1)
k

)
, (26)

where ∆ is a set of MMM related parameters.
We maximize the Q(∆,∆(l−1)) by updating ϕk, which is

initialized by assigning random number with normalizing to
[0, 1], as follows:

ϕ
(l)
k =

n∑
i=1

τ
(l−1)
ik

n
. (27)
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